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Abstract 

This thesis addresses the problem of blind identification for high speed wireless digital 

communication systems, they are always subject to intersymbol interference (ISI) caused by 

channel amplitude and phase distortions. In order to improve the capacity of the channel, blind 

Identification without the use of pilot sequences is used. 

In this theses we investigate new results that address the identification of linear rational channels 

based on the use of second order cyclic statistics (SOCS).  It is shown that channel identification 

is achievable for a class of linear channels without the need for a pilot tone or training periods. 

Moreover, channel identification based on cyclic statistics does not preclude Gaussian or near 

Gaussian inputs. SNR with Gaussian distribution was possible to handle. 

We also investigate the identification of linear time-invariant (LTI) ARMA systems based on 

second order cyclic statistics using IIR filter. We present a parametric method. The  parametric 

method we use directly identifies the zeros and poles of ARMA channels with a mixed phase.  

Computer simulation illustrates the effectiveness of our methods in identifying ARMA system 

impulse responses, compared by the traditionally used CMA method. 

We also investigated blind equalization using SOCS in order to peruse phase and speed the 

convergence.  
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Chapter 1 

Introduction 

Information bearing signals transmitted between transmitter and receiver 

encounter signal-altering physical channel. Examples of physical channels are 

telephone twisted pairs, coax cable , fiber optical guide and the  atmosphere for 

wireless communication, the last is the  concern of this theses. Each of these 

physical channels may cause change on the signal in form of distortion. The 

effects are noise, Intersymbol Interference (ISI) , a critical effect in digital 

communication. High speed of digital data transmission over band limited 

channels introduces ISI.  

The wireless channel transmit the signal in form of radio signal ( harmonic 

wave) bearing  the information in form of bits or symbols. A propagating signal 

through the wireless channel suffers different effects: path loss , multipath 

referred to reflection, scattering and diffraction (obstacles) . Therefore, the 

signal arrives much weaker than the transmitted signal due to the phenomena 

mean propagation loss, slow fading (long term fading) and fast fading (short 

term fading) and Doppler spread in mobile communications.   
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The effects of multipath propagation on transmitted signals in digital 

communication systems,  is one of the major obstacles in modern digital 

communication systems. Multipath propagation of the transmitted signal causes 

ambiguity of the received signal, and with noise, significantly degrades bit error 

rate (BER) performance of the communication system. The distortion of the 

received signal due to multipath is referred to as Inter Symbol Interference (ISI). 

ISI channel equalization plays a key role in digital communication systems. 

Typically, the wireless channel introduces this distortion to the transmitted 

signal that can make it difficult to recover the original data. In this case, an 

equalizer is necessary to reduce, or ideally to completely eliminate, the 

introduced intersymbol interference (ISI). Conventional equalization techniques 

rely on the transmission of a reference (training) sequence that is known at the 

receiver Channel side information at the receiver (CSIR). This sequence allows 

adaptation of the equalizer parameters to minimize some cost function that 

measures the distance between the actual equalizer output and the desired 

reference signal. For instance, when the equalizer is implemented by means of a 

linear filter, the filter coefficients can be easily adapted by using the well known 

Least Mean Square (LMS) , which minimizes the expectation of the squared 

error. Training sequence misuses the resources of the wireless communication 

system (the channel capacity). The data throughput ,  bandwidth and efficiency 

can therefore be increased if we employ an equalizer  that  does not require 

training sequence.  
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 When a training sequence is not available at the receiver, such a device is 

called blind equalizer. Blind methods (self-recovering or unsupervised or 

deconvolution) has received a great amount of attention during the last two 

decades because of its importance in communication systems. Many algorithms 

have been sucessfuliy used in blind equalization by exploitation of the source 

signal properties such as their statistical properties, constellation properties 

rather than precise knowledge of the transmitted sequence. 

They use the temporal structure: finite alphabet (FA), constant modulus (CM), 

sub-spaces orthogonality [ 5,6] and spacial structure: dirction of arrival (DOA) 

[4]. 

Representative algorithms exploiting the statistical properties are maximal 

likelyhood (ML),  methods based on second-order statistics (SOS) , methods 

based on higher-order statistics (HOS) [1, 2, 3,8], references therein and 

methods used Second Order Cyclostationary (SOCS) [7,9,10,8,24]. 

Considerable research publications has been seen  in the area of blind 

equalization and idenification  finite impulse response (FIR) channels, [1,2,4,5].  

The classic solutions to blind identification and equalization problem rely on 

channel phase information , an important entity in signal and image processing. 

Phase information can be derived from the HOS of its output signal [1, 2, 7] and 

references there in. The motivation for use of  HOS is its ability to supress 

Gaussian noise, because a Gaussian process has all its cumulants spectra of 

order n > 2 identical to zero. In other words a signal burried in a Gaussian noise, 

a transform to a higher-order cumulant eliminates the noise which makes HOS 
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attractive for detection/or estimation of signal parameters or even the entire 

signal reconstruction from cumulant spectra; HOS spectra preserves the true 

phase character of signals. Non-minimum phase reconstruction or system 

identification can be achieved in HOS domain due to the ability of polyspectra 

(higher order than power spectral density)  to preserve both magnitude and non-

minimum phase information. A third motivation that is not concerned in this 

theses is anlyzing non-linear systems [14].  Drawbacks of algorithms of HOS is 

the slow convergence compared with SOS-based methods. Non-Gaussian 

process also contributes to slow speed of computational algorithms and the 

performance of the cumulant-based approach.  

Since the blind algorithms based on higher-order statistics operate at the baud 

rate , it may also be sensitive to uncertainties , time jitter, phase jitter , and 

frequency offset. On the other hand the SOS mitigate the convergence problem . 

Moreover, the SOS of the channel output contain some phase information of the 

channel output when the channel input is non-stationary process. For 

applications in communication systems, many types of  signals exhibit a 

particular type of nonstationarity called SOS-cyclostationary (SOCS) [9, 10, 

13]. The exploitation of SOCS has shown applications in diverse areas such as 

detection and filtering of communication signals, parameter estimation, 

direction finding, identification of non linear systems [10] . 

An accurate phase reconstruction in the autocorrelation (or power spectrum ) 

domain can only be achieved if the signal is minimum phase. Unlike HOS, the 

power spectrum that sees the system as being minimum phase. At this point it is 
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worthy to include that by exploitation of cyclostationarity of the received signal 

(channel output) via over-sampling, we are able to identify possibly non-

minimum phase channel using only SOS (or  SOCS). 

Unfortunately when a channel is driven by a stationary process, the power 

spectrum does not exhibit phase information. Moreover, it is sensitive for 

Gaussian noise that affects both chanel capacity and probability of error ( 

depend on signal to noise ratio SNR). 

As summary it may be surprising that  non-minimum phases systems can  be 

identified using only the SOS of the system output. However, it is also 

surprising that SOCS can be used if the system is driven by a non-stationary 

input (process). This is indeed the case  of most communication channels  where 

the input signals are cyclostationary rather than stationary. 

In this theses blind equalization and identification is tackled in frequency 

domain for (infinite impulse response) IIR or ARMA( auto regressive moving 

average system) relying on the SOCS for purpose of extracting the phase 

information. 
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CHAPTER 2 

2.1 Algoritms of Blind Equalization and identification 

Blind equalization and identification are two problems that arise in a variety of 

engineering and science areas such as digital and data communications, speech 

signal processing, image signal processing, biomedical signal processing....etc 

The two problems are closely related to each other, and therefore similar design 

philosophies may frequently apply to the design of the system identification 

algorithms and the equalization algorithms. 

Equalization is  a signal processing procedure that restores a set of distorted 

source signals, these source signals are distorted by an unknown linear (or non 

linear) system, whereas system identification is a signal processing procedure to 

identify and estimate the unknown linear (or non linear) system. Linear channel 

distortion as a result of limited channel bandwidth, multipath and fading is often 

the most  serious distortion in digital communication systems which cause ISI. 

Traditionally, channel equalization is based on initial training period. Due to 

severe time variations in channel characteristic, as it is the case in a mobile 

wireless RF communication system, the training sequence has to be sent 

periodically to update the estimate, there by reducing the effective channel rate. 
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In addition, time-varying multipath propagation can cause significant channel 

fading, leading to system outage and equalizer failure during the training 

periods. It is therefore desirable that the channel be equalized without using 

training signal, that is, in a blind manner, by using only the received signal. 

Summarizing, blind equalization is a process during which an unknown input 

data sequence is recovered from the output signal of an unknown channel [1,3, 

5, 8], where the transmission of a training sequence in many high data rate, 

bandlimited digital communication systems is either impractical or very costy. 

[2] 

 

2.2  Blind Identification and Equalization in communication channels  

In data communications, digital signals are generated and transmitted by the 

sender through an analog channel to the receiver as shown in fig 1. 

Fig 1 system Identification 

The design of equalization algorithms is straight forward and effective when the 

system is completely known in advance. When the source signals and the 

system are unknown, the linear channel distortion affects both transmission 

quality (degrades the recived signal) and efficiency in wireless communications 

and imposes limits on data transmission rates (limit channel capacity) in many 

physical channels, where it became one of the most practical problems in digital 
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communications. Band limiting effect of the practical channel (when channel 

bandwidth is not large enough to accommodate the essential frequency content 

of the data stream, results in signal distortion of Intersymbol Interference (ISI).  

As these signals can be added destructively or constructively, causing severe ISI 

can arise from the time-varying multipath fading that commonly exists in a 

mobile communications environment. The varying channel characteristics must 

be identified and equalized in real time to maintain the correct flow of 

information. The channel identification and equalization technique currently 

used requires a major fraction of the channel capacity to send a training 

sequence over the channel. It should be noted that while the density of mobile 

users in a given city area is likely to increase dramatically, the number of radio 

channels in that area remains constant. Although many techniques, can be used 

to increase the channel capacity, the fraction of the channel capacity currently 

used for channel identification and equalization is very considerable. To save 

this fraction of channel capacity, blind channel identification is an attractive 

approach. Using the blind channel identification techniques, the receiver can 

identify the channel characteristics and equalize the channel based on the 

received signal. No training sequence is needed, which saves the channel 

capacity. 

Blind equalization is usefull to cancel the repeatedly transmitted training signals 

to improve system throughput, as the transmission of training signals obviously 

decreases communications throughput A reliable blind equalization algorithm is 

needed to be established that garantee speedy convergence, simpler and 
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effective computation, efficient that can compete with training based algorithms 

[1, 2, 11].  

 

2.3  Blind Single Input Single Output (SISO) equalization 

Blind equalization has four classes ; Single Input Single output (SISO), single 

input multiple output (SIMO), Multiple Input Single Output (MISO) and the 

most representative of all classes is theMultiple Input Multiple Output (MIMO). 

Many blind equalization algorithms have been designed to extract digital 

communications signals corrupted by inter-symbol interference. In the general 

blind equalization  task the source signal  filtered by an unknown 

transmission channel, denoted by   with unknown impulse response. The 

question is how to recover the input signal from the output without assistance of 

a training sequence when the channel is unknown.  

In this theses We will study the basics of blind equalization for SISO discrete 

systems and will describe commonly used blind algorithms highest important 

issues regarding their convergence.  

Most blind equalization schemes begin by sampling the channel output at the 

baud rate (needs perfect timing recovery) to produce a stationary channel output 

sequence for processing or fractionally sampled (higer rate than the baud 

rate)[1, 2].  

2.4  Channel Equalization in QAM Data Communication system 

In data communication, digital signals are transmitted through an analog 

channel to the receiver. Considering pulse amplitude modulated (PAM) 
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communication system, that can be simplified into the baseband representation 

of Fig.2 When the channel is time invariant, causal, and bounded-input bounded 

output (BIBO) stable, the received signal  in  the PAM system can be 

expressed as 

                                                  (2.1)     

•

Fig 2  Baseband representation of PAM and QAM Data communication system 

"composite" channel impulse response  that includes all interconnections 

between the pulse-amplitude modulation and demodulation. T is the symbol 

interval, and w(t) is a stationary, zero mean, additive white noise with spectral 

level  independent of  . When the distortion caused by a nonideal LTI 

channel is significant, where QAM communication systems are similar to PAM 

systems except that the signal , the channel  and the noise   are 

all complex-valued.as is often the case in practice, equalization is needed to 

remove the intersymbol interference (ISI) at the sampling instants. Due to the 

presence of ISI, the recovery of the input signal sequence , requires that the 

channel impulse response  be identified.  

Linear Channel 
 

 

+
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Although Intersymbol interference arises in quadrature amplitude modulation 

(QAM), However its effect can be most easily described for a baseband pulse-

amplitude modulation (PAM) system[7]. 

In blind equalization, The transmitter generates a sequence of complex-valued 

random input data  which is unknown to the receiver except for its 

probabilistic or statistical properties over the known alphabet  (or 

constellation) of the QAM symbols .which is real for PAM and complex for 

quadrature amplitude modulation QAM. Usually, this signal constellation  is 

symmetric, resulting in symmetric statistics for the i.i.d. input data. Thus, 

typical QAM data communication system, simply consists of a linear unknown 

channel which represents all the inter-connections between the transmitter and 

the receiver. The data sequence  is sent through a linear channel whose 

output  is received by the receiver. The function of the blind equalizer at 

the receiver is to estimate the original data from the received signal 

 by outputting a sequence of estimates for . 

The complex-valued LTI communication channel is assumed to be linear and 

causal with impulse rerponse . The input/output relation of the QAM 

system can be written as 

PAM is typically visualized in a constellation diagram .In which the input 

symbol is uniformly distributed on the following M-levels, 

           (2.2) 
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Fig 3   16-QAM complex-valued symbol set, in which the input signal {-3, -1, 1, 3} + j*{-3, -1, 1, 3} 

 

Generally, a communication channel can be represented by a filter as depicted 

in Fig 2 The transmitted data symbols  belong to a finite alphabet , which 

can be defined as   as shown in 

fig 3 

                  

2.5 Popular Algoithms for Blind Equalization 

The first blind channel equalization methods were based on a single-input 

single-output (SISO) channel models, sampled at the symbol rate. Some of 

them, such as the constant modulus algorithms (CMAs), involve nonlinear 

optimization and higher-order statistics (cummulants) of the channel output. 

Accurate estimation of cummulants requires large sample sizes. Although non-

minimum-phase SISO channel is invertible by an infinitely long equalizer,  

2.5.1  Sato Algorithm 

Sato was the first to develop a blind equalizer recursive algorithm for multilevel 

PAM signals, when the PAM input is binary   1975 [17]. 
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The Sato adaptive algorithm was one of the first widely used recursive 

identification schemes for discrete time system inverse identification based on 

measuring the system output without explicit knowledge (i.e., direct 

measurements) of its input . The only information concerning the system input 

utilized by the algorithm was knowledge of its statistical properties, e.g. the 

input probability distribution.  

. The error function is then given as 

                                                      (2.3) 

where  is defined as 

                                                                             (2.4) 

Where  denotes the statistical expectation  

the parameter vector is updated via  

                     (2.5) 

                                (2.6) 

where  represents the vector of input signals  at iteration step . 

The generalized algorithms have been shown to possess a desirable global 

convergence property under two idealized conditions. The convergence 

properties of this class of blind algorithms under practical constraints common 

to a variety of channel equalization applications that violate these idealized 

conditions are studied. Results show that, in practice, when either the equalizer 

is finite-dimensional and/or the input is discrete (as in digital communications) 
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the equalizer parameters may converge to parameter settings that fail to achieve 

the objective of approximating the channel inverse[1].  

2.5.2   BUSSAGE ALGORITHM 

The output signal of the linear equalizer is defined as 

                 

                                                      (2.7) 

where  is a scalar function of the equalizer output, which is preferably even 

to distinguish between ± levels. 

Merely the designed equalizer is a minimum ISI equalizer since we penalize ISI 

and try to optimize the coefficients to minimize ISI in which the mean cost 

function  should be specified such that at its minimum. Stochastic gradient 

descent minimization algorithm for an arbitrary cost function is given as 

                    

                        (2.8) 

Thus we want to define the derivative of the error function  as 

                                                        (2.9) 

 

2.5.3   Stop-And-Go Algorithms 

To avoid convergence to local minima in the cost function(poor performance) 

Picchi and Prati invented“stop-and-go” methodology, the Idea is to continue 

adapting the filter when error function is more likely to have the correct sign for 
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the gradient descent direction.Example:Consider two algorithms with error 

functions  and , respectively. “Stop-and-Go” would mean 

 

    

 

                                   

(2.10)                                             

Error functions  and  should be selected such that they maximize 

reliable regions and make most of the local and the global knowledge of the 

constellation. Given the equalizer output , the closest symbol 

 can be considered as a local information; while the size 

(number of alphabets), shape (square or cross) and energy (mean distance 

between the symbols) of the constellation can be considered as global 

information.  is termed local as it may change from one output to another; 

while the size, shape and energy are fixed and don’t depend on any specific 

value of . Most of the stochastic gradient descent algorithms employ error 

functions 

which exhibit global information. They compute an estimate of , by doing 

some nonlinear operation on the current equalizer output  such that the 

certain statistics of  are forced to match with global statistics of the 

transmitted data[1]. 
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2.5.4   Constant Modulas(Godard) Algorithms (app 1980) 

The CMA is based on a criterion that penalizes deviations of the modulus of the 

equalized signal away from a fixed value determined by the source alphabet. 

Strikingly, CMA has also been successful in equalizing sources not possessing a 

constant modulus property, such as QAM constellations. Hence, CMA is a 

method that may be applied over the majority of radio communication signals. 

The first major study of the CMA and its properties was performed by Treichler 

et al. who analyzed the capture and lock behavior of baud-spaced CMA. 

The vast majority of initial studies in blind equalization in general and the CMA 

method in particular have considered noise-free channels since it was argued 

that ISI is the major reason for signal degradation. 

This argument does not always hold in wireless channels where the channel 

medium cannot be controlled as effectively. However, in wireless channels, 

multiuser interference, atmospheric noise (thunderstorms), car ignitions, and 

other types of naturally occurring or man-made signal sources result in an 

aggregate noise component that may exhibit high amplitudes for small duration 

time intervals .  

The Godard algorithms which is also known as constant modulas 

algorithm(CMA) are a different generalization of the Sato Algorithm by Godard 

.It developed independently by Treichler et al.as the CMA, the most popular 

scheme for blind equalization of QAM systems. Integrating Sato’s error 

function yields. 
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                (2.11) 

This cost function was generalized by Godard into another class of algorithms 

that are specified by the cost function  

  ,    (2.12) 

where  is defined as 

          (2.13) 

Resulting in an update equation 

         (2.14) 

for the special case of q = 2 the algorithm is called “Constant Modulus 

Algorithm”, i.e. the channel signal has a constant modulus  

to attain perfect equalization. The Godard algorithm(GA) adjusts the equalizer 

parameter  by minimizing the Godard cost function defined as 

            (2.15) 

The cost function of CMA is of the form: 

             (2.16) 

Where  indicates statistical expectation.  is the constant depending only 

on the input data symbol . It is defined as  

              (2.17) 

 is the equalizer output  given by y[k]  where 

is the equalizer tap weights vector, 
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       (2.18)

         

let   be the pth-order cumulant of  defined as  

                (2.19) 

The stochastic gradient algorithms  are defined by minimizing the cost function 

  subject to     where    (2.20) 

 

Adaptive algorithms are typically obtained as stochastic gradient descent 

method to minimize the cost function. Given a cost function that can be written 

as 

                         (2.21) 

an on-line adaptive equalization algorithm adjusts the parameters of the 

equalizer via 

                              (2.22) 

Here,  is a small adaptation step size, and  is sometimes referred to as the 

error function. 

CMA penalizes all signals which are not constant modulus, equalization and 

carrier recovery are independent. A carrier frequency offset  causes phase 

rotation of the output 

                 (2.23) 

CMA cost function is insensitive to the phase. Possible application of CMA in 

analog modulation signals such as FM or PM. 
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The Godard cost function has length-dependent local minima, but it has no cost-

dependent local minima ,also has a one-to-one correspondence exists between 

the minima of the Godard algorithms. 

Although some convex cost functions can be designed for adaptive blind 

equalizers under specific parameter constraints to avoid local convergence, 

these algorithms tend to be rather slow due to their , nature of the cost 

functions.  Moreover, all the above convergence analyzes of blind algorithms 

are based on the noiseless channel assumption for analytical simplicity. There 

are no analytical results under noise yet. In fact, there have been some 

conjecture that channel noises may help equalizer parameters to escape some 

shallow local minima. Since channel noise is present in all practical 

communication systems even it is often small, convergence analysis of blind 

equalization algorithms must be carried out under channel noise.  

The blind equalization of a non minimum phase system requires necessarily a 

non linear transformation over the sequences involved in the adaptation process. 

Whereas the Godard class has smooth cost functions, the BGR algorithms have 

been particularly difficult to analyze because of a discontinuity appearing in the 

prediction error of the adaptation algorithm . In contrast, the smooth Godard 

algorithms have been successfully analyzed recently [20] 

Sato and Godard  approach the problem of blind equalization by introducing 

new criteria, different from the mean-square error (MSE) criterion used for 

trained equalizers, and then apply a gradient-search algorithm to optimize the 

selected criterion. These methods converge to the desired response under certain 
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assumptions concerning the probability distribution of the input sequence for 

the analysis and extension of Sato’s method and  for the analysis of Godard’s 

method. 

Benveniste er al.  present several concepts and results that significantly 

contribute to the understanding of the problem. First, they establish that a 

criterion based on second-order statistics, e.g., the MSE criterion, is insufficient 

for phase identification. For that reason the problem cannot be solved when the 

input distribution is Gaussian, since second-order moments completely specify 

the input-output statistics. Next, it has been proved that a sufficient condition 

for equalization is that the probability distribution of the individual recovered 

symbols , be equal to the probability distribution of the individual input 

symbols .  

Among many important findings in, it was shown that if the channel input is 

sub-Gaussian, then these algorithms exhibit ideal global convergence properties. 

Algorithms using implicit HOS are called Bussgang-type , such as the well-

known Godard and Sato algorithms. HOS techniques usually suffer from their 

slow convergence and local minima problems. Algorithms based on SOS  

mainly exploit matrix decomposition methods[21]. 

2.6 Convergence of blind SCD equalizers                         

What measures the success of the blind equalizer algorithm? Thus to design a 

satisfactory algorithm that acheives the goal of blind equalization “the desired 

convergence for noisless channels. the algorithm should result in the 

convergence of equalizer parameters to equilibria that can eliminate sufficient 
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ISI.under the QAM enviroment ie.  the function  has to be selected such that 

the local minima of  correspond to significant removal of ISI. A possible 

equilibrium  of the blind equalizer.If the input constellaion is knwon to the 

receiver then it dictates the acceptable removal of ISI, which in turn determines 

the acceptable convergence performance of blind equalizer.,the more we know 

about the constellation, the more relaxed the convergence performance of 

algorithm can be.  

                                         (2.24) 

where  is the stepsize of the algorithm. 

                                                                       (2.25) 

We notice that the distribution  and the constellation of the input sequence  

affect the convergence of blind equalizer. 

We notice that the stable stationary points of equation 2.5.6 correspond to the 

local minima: 

                                                     (2.26) 

The geometry of the error function  over the equalizer parameters  

determines the convergence of the adaptive algorithm,usually simulation results 

demonstrates the convergence of the blind algorithms and not analysis because 

it is dificult to do that due to the dependence of the statistical characterization of 

the channel output signal  on the unknown channel impulse response. 

Sato, BGR, Stop-and-Go, CMA, Shalvi-Weinstein Algorithm are hard to 

analyze convergence behavior of the algorithms.  
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Since finite parameterization is a practical necessity for terization may have 

undesirable minima. Undesirable local convergence behavior has been shown 

for the Godard algorithm (CMA case) the BGRA and the Shalvi and Weinstein 

Algorithm. 

2.7 Summary of algorithms 

In many blind adaptive algorithms, a cost function  an be defined. In 

general  but   is chosen from 

                                     (2.27) 

This way, the general update equation 

  

                                            (2.28)  

Table(1) below lists the algorithms most commonly used for adaptive blind 

equalization. 

Algorithm error function /nonlinearity update equation 

Decision 

Directed 

  

 

Sato 
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Table (1) : Overview of different blind equalization algorithms. 
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Chapter 3 

 

3.1  Blind identification and equalization based on second order 

cyclostationary statistics 

Blind channel equalization plays an important role in digital communication 

systems when the training sequence is impractical  or misuse  the resorces as 

channel capacity (e.g. mobile GSM  system uses about 50% of the channel 

capacity for training sequence). Channel equalization requires that channel 

transfer function be identified.  The major difficulty is that the input signal to be 

transmitted through the channel is not available. Hence numerical optimization 

methods, in particular, the method  Minimum Mean Square Error (MMSE), are 

not applicable, therefore, special blind equalization and identification methods 

are needed. 

Conventional algorithms for adaptive blind equalization are based on Higher 

Order Statistics (HOS) or Second Order Statistics (SOS). Algorithms using 

explicit HOS use Higher Order Cumulants (HOC). Algorithms using implicit 

HOS are called Bussgang-type, such as the well-known Godard and Sato 

algorithms. HOS techniques usually suffer from their slow convergence and 

local minima problems. Algorithms based on SOS mainly exploit matrix 
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decomposition methods or unsupervised neural networks for blind equalization. 

Both HOS and SOS based algorithms have their merits and demerits.  

It has been clear that almost all man-made communication signals exhibit a 

statistical property called cyclostationarity. It is Shown that the second-order 

statistics (SOS) of a cyclostationarity signal contains the phase information of 

the channel thus  it goes through, and this phase information can be used to 

identify the channel, which is possibly a non-minimum phase channel, up to a 

complex constant. The first blind equalizer that was proposed by using the 

phase information contained in the SOS of the oversampled output sequence, 

the blind fractionally spaced equalizer, based on the cyclostationarity and data 

structures involved in the oversampled received sequence. Although these 

methods can obtain an acceptable equalization performance within 100 or more 

symbols, they are generally sensitive to the error in channel order estimation. In 

these algorithms, it is generally assumed that the channel order is either known 

or can be estimated by other algorithms. As we know, when the signal-to-noise 

ratio (SNR) becomes smaller, to determine a correct channel order from the 

channel output is a difficult task. In order to weaken the dependence on 

channel-order estimate, in comparison with SOS, the higher order statistics 

(HOS) of a signal offers an appealing benefit: insensitivity to an additive 

Gaussian noise. This benefit is very useful in communication systems because 

most noises in communication system can be described approximately by 

Gaussian distribution. However, in order to exploit its HOS, a non-Gaussian 

symbol sequence with independent and identically distributed (i.i.d.) functions 
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are commonly assumed. Although the i.i.d. condition is stricter than the 

cyclostationarity used in SOS-based methods, two facts render it applicable:  

1) the real input symbol sequence tends to be i.i.d. and 2) if the HOS is utilized 

only up to the fourth order, then a qualified input symbol sequence is only 

required to satisfy i.i.d. condition up to the fourth order (i.e., not to infinity.) 

Many blind channel identification and equalization methods based on HOS have 

been developed. 

Therefore the classic tools used for channel identification and equalization rely 

on channel phase information derived from HOS.  The motivation for use of 

HOS its ability to suppress Gaussian noise, because a Gaussian process has all 

its cumulants spectra of order n > 2 identicll to zero. In other words a signal 

buried in a Gaussian noise, a transform to a higher-order cumulant eliminate the 

noise which makes HOS attractive for detection/or estimation of signal 

parameters or even the entire signal reconstruction from cumulant spectra; HOS 

spectra   preserve the true phase character of signals. Non-minimum phase 

reconstruction or system identification can be achieved in HOS domain due to 

the ability of polyspecra (higher order than power spectral density)  to preserve 

both magnitude and non-minimum phase information. Drawbacks of algorithms 

of HOS is the slow convergence compared with SOS-based methods. However 

HOS exhibit high-variance and channel variations may violate the stationarity 

assumption as the receiver collects long records required for reliable HOS 

equalization.  
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A channel driven by a stationary process the power spectrum (PS)  does not 

exhibit phase information. Moreover, it is sensitive for Gaussian noise that 

affects both channel capacity and probability of error( depend on signal to noise 

ratio (SNR)). On the other hand the SOS mitigate the convergence problem. 

Moreover, the SOS of the channel output do contain some phase information of 

the channel output when the channel input is non-stationary process. For 

applications in communication systems, many types of  signals exhibit a 

particular type of nonstationarity called SOS-cyclostationary ( SOCS) [9, 10, 

13]. An accurate phase reconstruction in the autocorrelation (or power 

spectrum, SOS ) domain can only be achieved if the signal is minimum phase. 

Unlike HOS, the power spectrum that sees the system as being minimum phase. 

At this point it is worthy to include that by exploitation of cyclostationarity of 

the received signal (channel output) via over sampling, we are able to identify 

possibly non-minimum phase channel using only SOS (or SOCS). In Second 

Order Statistics (SOS) based system identification, the autocorrelation of the 

output sequence is used to estimate the parameters. However since 

autocorrelation is phase blind, these methods cannot distinguish between 

minimum phase and non-minimum phase systems. Even if the system is non-

minimum phase, those roots, which are outside the unit circle, are mapped back 

into the interior of the unit circle. Thus the minimum phase equivalent (MPE) of 

the non-minimum phase system is identified. 

Note that if the driving noise is Gaussian and the system is minimum phase, 

then SOS based methods can identify the system correctly . If the driving noise 
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is Gaussian and the system is non-minimum phase, then no method can 

correctly identify the system using outputs alone. However, if the driving noise 

is non-Gaussian, then there exist methods based on Higher Order Statistics 

(HOS) which can identify the system correctly. This is because HOS preserves 

phase information for non-Gaussian noise, but it is phase blind for all kinds of 

Gaussian noise.  

 Table(2)  below compare between SOCS, SOS and HOS. 

 SOCS SOS HOS 

Identifiability 

conditions 

Coprime subchannels Gaussian NonGaussian signals 

Performance Fast convergence Medium -fast Slower convergence 

Compexity Medium to low Medium High 

Table (2): Comparison of the SOCS and HOS based methods for blind equalization domain 

 

3.2  Cyclostationary signal property 

Cyclostationarity is a useful property used in blind channel equalization and 

identification , it is obtained by oversampling the channel output  with a 

frequency higher than the baud rate and used as an alternative method to HOS 

based methods.  

Spectral correlation properties of cyclostationary signals can be used by treating 

their spectral correlation density functions or cyclic autocorrelation functions.  

A new approach has presented channel identification methods based on the use 

of second-order cyclic spectra of the channel output[16]  presented a frequency 
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sampling method utilizing the relationship between cyclic spectra and the 

channel frequency response.   

Many digital communications signals are cyclostationary, the continuous time 

channel output signal in PAM and QAM data communication systems are in fact 

cyclostationary processes. is it possible to achieve channel identification based 

solely on second order cyclic statistics of the channel input and output to 

recover the phase of the channel transfer function[7]. 

The magnitude of the channel transfer function is first derived from the power 

spectral density or the cepstrum of cyclic spectra, then the channel phase based 

on the cyclic spectra alone is reconstructed. 

The cyclostationarity property is a result of the implicit periodicity of these 

signals, related to the baud rate,carrier frequency or any other periodic 

component. 

Cyclostationary signals have periodically time-varying second order statistics, 

they have a periodic autocorrelation, while stationary signals have second order 

statistics which are constant with time. 

In the following section we will present the cyclostationarity in time and 

frequency domain. 

 

3.3 Time Domain Representation of Cyclostationary 

To analyse cyclostationary signals, we start by comparing the two parameter 

cyclic autocorrelation with the more conventional autocorrelation function. 

Periodicity of this function with time results in spectral redunduncy which can 
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be exploited by advanced signal processing methods to give an enhanced 

immunity of a signal to interference. 

Autocorrelation is a measure of how closely a signal, or sequence, is correlated 

with time shifted versions of itself. Two relatively time shifted versions of the 

signal are multiplied together and then some form of avaraging is used to give a 

result which is a function of time or time shift. 

A wide sense stationary signal or process is one in which the mean value and 

autocorrelation are invariant in time. The autocorrelation  of a random 

process  is the expected value of the product  expressed 

mathematically as: 

                               (3.1) 

Or 

                                    (3.2) 

Where E[.] indicates the expected value. 

Wide sense cyclostationary signal or process is one in which the mean value and 

autocorrelation are periodic, using the probabilistic definitions : 

                                                  (3.3) 

                                       (3.4)

                      (3.5) 

Where  is an integer. The subscript  on  indicates that  is the 

autocorrelation of the signal  is the probabilistic autocorrelation 

function expressed as a function of two variables,  and  where  is a 
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“parametric time” (the lag between the two signals) , and  is ” real time”, (the 

time origin of the autocorrelation calculation ) 

In equation (3.3), autocorrelation function is periodic in  with period . That 

is the fundemental period is , and  is also periodic at harmonics of  . 

The properties of autocorrelation (and mean) based on the probabilistic 

definition are of course dependent on how the ensemble is defined. An 

ensemble is an imaginary set of an infinite number of instances of the process or 

under consideration, but it is important to be aware of the similarities and 

differences between these different instances. 

As the duration of a finite signal increases, the finite deterministic 

autocorrelation function obviously tends towards the infinite deterministic 

autocorrelation. As time tends to , the deterministic autocorrelation tends 

towards the probabilistic autocorrelation as long as the signal or process is 

ergodic. 

 

3.4 Frequency domain approaches 

Frequency domain approaches rely on cyclic spectra of the channel output 

explicitly, when the channels has limited phase variations (e.g channels with 

rational transfer functions), the channel dynamics can be identified through the 

use of cyclic spectra of the cyclostationary channel output signal. The channel 

output signal should be sampled at higher rate than the baud rate  which will 

have important second order statistical information for linear channel 

identification. 
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QAM  signals exhibit cyclostationarity related to the baud rate. The baud rate 

related to correlation can be seen to be a direct result of the sampled signals 

properties : 

Let  be a continuous time signal which changes instantaneously, at 

random times, between the values ( , It has equal probability of taking 

each of these two values. The signal changes in such that at every instant, it is 

uncorrelated with every other instant. This purely real, signal is chosen because 

it is simple to be represented graphically. 

A sequence of impulses  carrying data values of  can be 

constructed by multiplying  by sampling function  which is a 

sequence of impulses: 

                    (3.6) 

                                        (3.7) 

,  and  FT  are respectively written as: 

  ,                                               (3.8)   

where  is an integer,  is the symbol period. 

  ,                   (3.9)  

the spectrum  is invariant under frequency shifts of    and made up of 

aliased copies of the spectrum , so the spectrum  exhibits spectral 

correlation. 



33 
 

An impulse sequence has a spectrum of infinite bandwidth. If a signal’s 

bandwidth is no greater than the Nyquist limit, then there is no cyclostationary, 

such a signal is stationary. To maintain a cyclostationary signal spectral 

correlation., we use a sufficiently high sampling frequency to exhibit baud rate. 

3.5  Cyclic autocorrelation function 

Cyclic autocorrelation function : 

As  equation (3.7) is periodic in , we can write it in the form of a 

Fourier series expansion: 

                                (3.10) 

The summation can be over all values of  although the coefficient  will be 

zero unless  is equal to a period of the autocorrelation function. For example if 

the baud rate is  is a cyclic frequencies, then  will take values 

 because the baud rate harmonics are also cyclic frequencies. 

If  is not periodic, then all coefficients of the summation will be zero 

except for . If there is periodicity present then at least one other  will be 

non-zero.  

Auseful way of displaying the cyclostationarity properties of a signal is to plot 

the spectral correlation density (SCD). This function is defined as the fourier 

transform of the cyclic autocorrelation function as follows: 

                                     (3.11) 

The conjugate SCD is similarly defined: 

                       (3.12) 
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The cyclic autocorrelation function and spectral correlation density Fourier 

transform pair for cyclostationary signals to the autocorrelation function and 

power spectral density pair for stationary signals. 

In digitally modulated signals, the cyclic frequencies are usually related to the 

baud  rate and the carrier frequency. Spread spectrum signals may have 

additional cyclic frequencies, as an example, a rectangular pulse BPSK signal 

with baud rate  and carrier frequency  has cyclic frequencies 

  

 

3.6  Cyclostationarity for Over Sampled Channel Output 

Usually blind equalization in digital communication systems is solved by using 

second order statistics signals  sampled at the baud rate, but communication 

channels are, in general, nonminimum phase,which makes second order 

statistics approaches inadequate for channel equalization, as it is phase blind 

and cannot determine channel phase. 

By oversampling the channel output with a frequency higher than the baud 

rate, we obtain a discrete cyclostationary process. Let the sampling interval be 

                      

The oversampled discrete time signal can be written as 

 

                                            (3.13) 
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Where 

                                            (3.14) 

                            (3.15) 

  

The correlation function of is defined as 

                              (3.16) 

  

\Since  and   are independent, straightforward calculation yields 

   (3.17) 

Clearly,  is a cyclostationary process with period p since 

     for all          (3.18) 

Although we assumed that  is white, our basic derivation can be easily 

extended  to colored stationary noises. 

The cyclic correlation function of discrete process  is defined as 

                    (3.19) 

 

for  The cyclic spectrum of  is hence obtained through  

                                                     (3.20) 

Equivalently, in the Z- domain, we define 

                                                      (3.21) 
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with a channel transfer function 

                                                            (3.22) 

    

By refering to (3.22), we see that  

                        (3.23) 

  or  

                                        (3.24) 
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Chapter 4 

4.1  Blind identification of ARMA systems based on second-order cyclic 

statistics 

Linear parametric models of stationary random processes whether signal or 

noise, have been found to be useful in a wide variety of signal processing tasks 

such as signal detection, estimation, filtering, and classification, and in a wide 

variety of applications such as digital communications, automatic control, radar 

and sonar, and other engineering disciplines and sciences. Parsimonious 

parametric models such as AR, MA, ARMA or state-space, as opposed to 

impulse response modeling, have been popular together with the assumption of 

Gaussianity of the data. Linear Gaussian models have long been dominant both 

for signals as well as for noise processes. Assumption of Gaussianity allows 

implementation of statistically efficient parameter estimators such as maximum 

likelihood estimators. A stationary Gaussian process is completely characterized 

by its second-order statistics (autocorrelation function or equivalently, its power 

spectral density { PSD) and it can always be represented by a linear process. 

Since PSD depends only on the magnitude of the underlying transfer function, it 

does not yield information about the phase of the transfer function. 
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Determination of the true phase characteristic is crucial in several applications 

such as seismic deconvolution and blind equalization of digital communications 

channels. Use of higher-order statistics allows one to uniquely identify non-

minimum-phase parametric models. Higher-order cumulants of Gaussian 

processes vanish, hence, if the data are stationary Gaussian, a minimum-phase 

(or maximum-phase) model is the 'best' that one can estimate. Given these facts, 

it has been of some interest to investigate the nature of the given signal: whether 

it is a Gaussian process and if it is non-Gaussian, whether it is a linear process. 

Recent work has presented novel techniques that exploit cyclostationarity for 

channel identification in data communication systems. In this theses we will 

discuss the identification of ARMA modeled IIR channels based on 

cyclostationarity of the channel output signal sampled at frequency higher than 

the baud rate. Blind system identification can be classified into parametric and 

non-parametric identification. In parametric identification, the system is 

assumed to a particular  class of models, indexed by a set of parameters. The 

parameters are identified from the available data. i.e. it directly identifies the 

poles and zeros of the mixed phase ARMA channels using  SCD of the channel 

output with a mixed phase. In non-parametric identification an exact model of 

the system is not specified. Rather some assumptions are made regarding the 

system ( e.g, linearity assumption) and the transfer function of the system is 

estimated.. The parametric method requires advance information about the order 

of the system. Also to reduce the phase estimation errors at the poles, a hybrid 

method in which the poles of the channel are predetermined. 
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In general by comparing the parametric method to the nonparametric methods, 

the performance of a parametric method is limited to the high signal-to-noise 

ratio condition and is applicable only when the assumed model matches the 

process under consideration.  

The major dificulty in identifying the channel response from second order 

statistics is the limited amount of phase information available from second order 

cyclostationary statistics and the limited support of cyclic spectrum of strictly 

bandlimited channels. To determine the channel phase, the channel must be 

finitely parametarized. 

Properties of SOS that states that the SISO LTI system  is absolutely 

summable and the source signal  is a wide sense system(WSS) white 

process with variance , then the random signal   given by 

                                    (4.1) 

In section 2.4 we introduced the mathematical model to describe the 

identification method of pulse amplitude modulated (PAM) communication 

system(equation 2.1). 

The actual channel output  is cyclostationary  and is wide-sense since 

                                                         ( 4.2) 

And  

                                                        ( 4.3) 

 It can be verified that  
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                                                                (4.4) 

Here we will test the feasibility of phase identification using second-order cyclic 

statistics. 

The  cyclic autocorrelation function for cyclostationary process with 

fundamental period T is defined by 

                         (4.5) 

Correspondingly, the spectral-correlation density (SCD) is given by

                          (4.6) 

For the PAM signal  of (2.1) under white channel input of unit variance, the 

SCD can be shown to relate to the frequency response of the channel through 

the expression

     (4.7) 

in which  is the channel frequency response.  

Equivalently in the  domain we define 

                                                             (4.8) 

 Then  we denote the channel transfer function as 

                                                             (4.9) 

So we get  

                         (4.10) 
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This is the equation that we will use in our analysis and design of channel 

identification based on second order statistics.  

The magnitude of  can be identified from the Power Spectral Density 

(PSD) of the channel output, we have to identify the phase of  from 

             (4.11) 

correlated channel inputs if the correlation is known. Let be the phase 

of SCD , and let  be the phase of the frequency response

). For , the following relationship between the two phases can be 

written as 

            (4.12) 

For an arbitrary channel, the above equations indexed by  k, in which phase 

unwrapping is necessary to obtain  ,are the only possible sources of 

phase information. The identifiability of  from  can be better 

illustrated through a cepstral approach. Let 

                                                              (4.13) 

                                                                 (4.14) 

And  

                                                           (4.15) 

From this particular relationship, we can make the following observations: 

No cepstral channel phase information can be extracted when 
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      or when                                    (4.16) 

Therefore, an arbitrary channel transfer function cannot be completely identified 

from the cyclostationary statistics alone. 

It is clear from equation (3.5) that no additional phase information can be 

extracted from the SCD by setting   

Consequently, we simply consider the use of SCD with  that has the 

largest support region. 

Theoretically, most of the imaginary cepstrum of can be identified 

through 

                                      (4.17) 

except for  . If is bounded at , the  -normed error 

between the true phase and the phase estimate will be zero since the set 

has zero measure. However, when is not bounded at 

, the channel phase cannot be determined even theoretically. 

For example, if has an impulse at , then correspondingly, 

will contain a sinusoidal part with frequency ( e.g., ) and the 

-normed phase error can be infinite. It is in fact clear from (3.2) that the SCD 

contains no information about any oscillatory phase content with frequency 

. This fact is reinforced in  where it is shown that discrete channels with 

certain number of zeros uniformly spaced in a circle (resulting in oscillatory 

phase content) cannot be identified. 
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The SCD phase can only be extrapolated for all frequencies when the channel is 

finitely parametrized or can be well approximated by a finitely parametrized 

model. Thus, ARMA finite parametrization is a sufficient condition for the 

unique identification of channel phase from second-order cyclostationary 

statistics. 

If nonparametric methods are used, the nonparametrized linear system cannot be 

uniquely determined. In that case, we must devise a strategy to remove the 

ambiguity without generating unreasonably large errors.  

we will present methods for  Blind identification of ARMA systems based on 

second-order cyclic statistics using the parametric method.  

 

4.2  Parametric ARMA Identification  Method 

The major difficulty in identifying the channel response from second-order 

statistics is due to the limited amount of phase information available from 

second-order cyclostationary statistics and the limited support of the cyclic 

spectrum for strictly bandlimited channels. To uniquely determine the channel 

phase, the channel must be finitely parametrized. We shall assume that the 

channel H[z] can be well approximated by an ARMA model. Our objective of 

blind channel identification is then to identify the ARMA channel response 

from information contained in the relationship of  

     (4.18) 

or  the cyclic spectra  

                                             (4.19) 
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The  parametric method that will be presented directly identifies the poles and 

zeros of the channel transfer function H[z] from its relationship with the cyclic 

spectra(2). We exploit the information contained in  

and , which are the cyclic spectra with the largest support and are 

therefore the most  reliable.The ARMA channel transfer function can be written 

as  

                                               (4.20) 

where this method for channel identification is based on the following 

relationships: 

                                            (4.21) 

                                          (4.22)  

equation (4.2.1) is based on  

                 (4.23)      

             

To identify the zeros of H[z] as common zeros, the zeros of the channel are 

among the common zeros of  and , the poles of the channel are 

the stable poles of  or that is when there is no pole/zero 

cancellation in the two products of  
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It is required that no common zeros exist between and 

 , also zeros with the same radius must not have a phase 

difference of . this condition prevent cancellation of the same pole in both 

 and . 

Based on the above, we can identify the poles and zeros; 

 

4.3 Identifying the Poles and Zeros 

Based on cyclic spectra and this simple condition that zeros on the same radius 

must not have phase difference of , we can identify the poles of the system 

as union of stable poles of   and . The un-canceled zeros of the 

system can be identified as common zeros of   and .  The 

remaining task is to locate the common zeros that are canceled in either  

or  but not in both. 

To find those cancelled zeros, we rely on the channel poles that have been 

identified. Denote the set of stable poles of  as  and the set of the stable 

poles of  as . The poles of the channel are given by 

 

                                                   (4.24) 

For every element   in  

                                        (4.25) 

There is a canceled zero at 
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(4.26) 

In addition, for every element  in 

                                        (4.27) 

There is a canceled zero at 

                                         
(4.28) 

To identify poles and zeros we have to assume that the channel must be casual, 

stable and time-invariant and must satisfy the following conditions: 

Zeros on a circle do not have phase difference of . 

There are no zeros or poles on the unit circle. 

Then, the poles of the ARMA system can be found as the union of roots of  

            (4.29) 

In which  ‘s are determined by equations 

          (4.30) 

 

For       Where 

                 (4.31) 

The un-canceled zeros inside the unit circle can be found as the common roots 

of 

            (4.32) 

In which   is determined by equations  
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        (4.33) 

For    

Where 

                                     
(4.34) 

The un-cancelled zeros outside the unit circle are the reciprocals of the 

remaining roots of  multiplied by . The canceled zeros can be found 

from identified poles based on  

                                    
(4.35) 

And 

                                    
(4.36) 

Based on Prony's method and if  is a rational function then consider the 

equation  

            
(4.37) 

Where  is the inverse discrete Fourier transform of . For  non 

negative integer and the poles ’s of   with multiplicity . 

If  

                       
(4.38) 
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We conclude that ’s are distinct and nonzero and ’s are also nonzero,

 then  are roots of  

                                                        (4.39) 

With multiplicity , to determine ’s, we us the following equation 

                           (4.40) 

Estimating SCD: First, estimate correlation function   by 

                                   
(4.41) 

Then, calculate cyclic correlation function    

                                   
(4.42) 

And the cyclic spectrum by 

                                      (4.43) 

Identifying Channel: For the parametric algorithm, identify the poles and zeros 

by identifying prony’s matrix   

Calculating Channel Response and NMSE: For the parametric algorithm, obtain 

the frequency response of the channel by: 

.                                      (4.44) 
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4.4 Algorithm 

To demonstrate the performance of the ARMA  identification algorithm,  

several channels are tested, also the simulation is done by taking the following 

steps:   

1) Generate the PAM data output: 
 
where  =4 is the 

oversampling rate. The input sequence  is an i.i.d. four-level PAM signal. 

Is a stationary white Gaussian noise. Oversampling the input sequence 

 gives the equivalent oversampled channel output.  

 2) Estimate the SCD of the received sequence: estimate the correlation function 

using equation 4.41, then calculate the cyclic correlation function  

using equation 4.41 

   

and the cyclic spectrum using equation 4.43 

 

3) Identifying the channel for the parametric algorithm, identify the poles and zeros  

To test four ARMA systems for our identification methods. Use identification 

results using the parametric under SNR =25 dB 

4) Calculating Channel Response and NMSE: For the parametric algorithm, 

obtain the ARMA channel transfer function  

 
 

 



50 
 

4.5 Computer Simulation results 

We test several ARMA systems for our identification method, to pick zero and 

pole locations, plot impulse response, plot some samples from a simulated 

ARMA series, plot the frequency response function.  

The simulation was done under SNR=25  d B 
 

 

1)We tested the channel with one pole and one zero, for 500 samples.  And the 

following channel  transfer function results. 

 

coefficients in AR form:-0.61842, coefficients in MA form:0.4693 

      
a)                                                                       b)  

                                                                          
                                    c)                                                                        d) 
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                           e)                                                                           f)                                                                       

 
                                   g) 

Fig (4.1)  a) pole) coefficients in AR form are(-0.61842) and zero coefficient in MA form is  
(0.4693) for 500 samples. b) Impulse response. c) spectral density. d) log scale spectral density. 
e)  spectral CDF.  f)  smoothed periodogram of ARMA.  g) ACF of ARMA 
 
2) We tested the channel with one pole and one zero, for 1000 samples. And the 

following channel transfer function results. 

      

the  coefficients in AR form   -0.9693, coefficients in MA form 0.9342                                                             
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c)                                                        d) 

               
                                             e)                                                                    f) 

           
                                                g) 
 
Fig (4.2) a) pole coefficients in AR form are (-0.9693) and zero coefficient in MA form is  
(0.9342) for 1000 samples. b) Impulse response. c) spectral density. d) log scale spectral 
density. e)  spectral CDF.  f)  smoothed periodogram of ARMA.  g) ACF of ARMA 
  

3) Testing for 2 poles and 1 zero for 3000 samples, coefficients in AR form 

-1.7456     0.87585, coefficients in MA form: 0.92544 giving the channel 

response 
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a)                                                        b) 

                 
c)                                                       d) 

 

             
                                    e)                                                        f) 

        
                                            f) 

Fig (4.3) a) pole coefficients in AR form are(-1.7456  0.87585) and zero coefficient in MA form 
is  (0.92544) for 3000 samples. b) Impulse response. c) spectral density- linear scale. d)  spectral 
density- log scale. e)  spectral CDF.  f)  smoothed periodogram of ARMA.  g) ACF of ARMA 
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4) For 2 poles and 2 zeros and 1000 samples, coefficients in AR form:   

     -1.2018 and 0.7655, coefficients in MA form:1.2018 and 0.62438 which 

gives: 

 

 

    

a)                                                              b) 

                  

c)                                                    d) 

            

                                    e)                                                             f) 
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                                    g) 

Fig (4.4) a) pole coefficients in AR form are(-1.2018 and 0.7655) and zero coefficient in MA 
form is  (1.2018 and 0.62438) for 1000 samples. b) Impulse response. c) spectral density- linear 
scale. d)  spectral density- log scale. e)  spectral CDF.  f)  smoothed periodogram of ARMA.  g) 
ACF of ARMA 

 
 
5) For 3 poles and 2 zeros, coefficients in AR form: -3.2149    3.5869   -1.3509 

coefficients in MA form:   2.1667    1.3939 which gives 
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c)                                                                     d) 

                       
                                       e)                                                                          f) 

 
                                     g) 
Fig (4.5) a) pole coefficients in AR form are(-3.2149  3.5869 -1.3509) and zero coefficient in 
MA form is  (2.1667  1.3939) for 1000 samples. b) Impulse response. c) spectral density- linear 
scale. d)  spectral density- log scale. e)  spectral CDF.  f)  smoothed periodogram of ARMA.  g) 
ACF of ARMA 
 

the parametric algorithm gives good performance. the parametric algorithm is 

sensitive to changes in channel noise and data length.
 

The parametric method is more reliable as the data length increases, but it 

deteriorates as SNR decreases, it does not perform well under low SNR and 

short data. 
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When looking at the CMA simulations we performed we can demonstrate the 

feasibility of the algorithms through several CMA simulation examples. 

CMA simply collects a sequence of data   and generates a sequence of 

outputs  throug .  is found in the sequence that has the maximum 

 and , respectively. The equalizer parameters are then 

updated, then the new parametes are then used on the same block of data  

to generate a new output sequence  used for the next update step. 

 Blind channel estimation/equalization was done using Constant Modulus 

Algorithm (CMA)  

1) Blind Adaptive CMA equalizer, the equalizer output is shown in 

fig(4.6)a,b,c and d for different values of signal to noise ratio (SNR), It 

is obvious that the equalized signal is best at SNR 25, it also shows the 

effective reduction of ISI, where the constellation of the equalizer output 

indicates that the equalized signal is in a better performance.  

            
      Fig (4.6) a) SNR =10,  Signal Error Rate (SER) =  0.1510 
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                b)SNR =20 ,  Signal Error Rate (SER)  =  0.0030 

                        

 
c) SNR =25  , SER =  3.3557e-004 

 

            
             d) SNR = 35  , SER = 0 
 
 
 

2)Blind fractional-space CMA equalizer, in fig(4.7) a,b and c below it is 
clear that it has blind fractional-space CMA equalizer has better performanc, 
faster convergence than the previous blind Adaptive at SNR =25.   
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       Fig (4.7) a) SNR = 25,   SER =  0 

 

        
 
      b) SNR=10, SER = 0.0385 

     

 
 
              c) SNR = 35, SER =0 
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Conclusion 
 

In this theses, First, we present a parametric method for ARMA identification to 

identify the linear IIR systems based on the second-order cyclostationary 

statistics of the channel output. 

The  parametric algorithm directly identifies the zeros and poles of mix-phase 

ARMA channels satisfying some mild conditions. It is clear from simulation 

that as poles and zeros tend to go close to the unit circle, performance is better, 

also it is less reliable as poles and zeros go beyond the unit circle. 

500, 1000 and 3000 samples are used, in the simulation it is seen that the longer 

data length used the less reliable the result becomes. 

Computer simulation results are presented to demonstrate the performance of 

the proposed identification algorithm which is much more effective than the 

CMA, requires less SNR. The Parametric method deteriorates as SNR 

decreases. Due to higher sensitivity to channel noise under limited data length 

,but it also does not perform well in low SNR environments, but it is more 

suited for applications where SNR is high and the data length is relatively long. 

by exploitation of cyclostationarity of the received signal (channel output) via 

over sampling, we were able to identify possibly non-minimum phase channel 

using only SOS SOCS. 

We hence can conclude when using CMA that in general, the inclusion of a 

modest level of additive noise (SNR=10) at the channel output does not 

diminish   
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